A Regularized Particle Filter EM Algorithm Based on Gaussian Randomization with an Application to Plant Growth Modeling
نویسندگان
چکیده
Parameter estimation in complex models arising in real data applications is a topic which still attracts a lot of interest. In this article, we study a specific data and parameter augmentation method which gives us the opportunity to estimate more easily the parameters of the initial model. For this reason, the notion of Gaussian randomization of a model with respect to some of its parameters is introduced. The initial model can be regarded as a submodel of the resulting extended incomplete data model. Under the assumption that the initial model has a unique maximum likelihood estimator (MLE) and that the likelihood function is continuous we prove that the extended model has a unique MLE with common values for the parameters of the MLE which correspond to the initial model. We also prove the reverse direction. Moreover, an appropriate stochastic version of an EM (ExpectationMaximization) algorithm is suggested to make parameter estimation feasible. In particular, we describe how the regularized particle filter of [21] can be used in this frequentist-based approach to perform the Monte Carlo E-step at each iteration of the stochastic EM algorithm. This regularized version is particularly adapted to the framework of Gaussian randomization since the last iterations of the EM algorithm are characterized by low variance in the parameter distributions. A toy example with available analytic solutions, a synthetic example and a real data application with scarce observations to the LNAS (Log-Normal Allocation and Senescence) model of sugar beet growth are presented to highlight some theoretical and practical aspects of the proposed methodology.
منابع مشابه
A New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملA Detailed Investigation of Particulate Dispersion from Kerman Cement Plant
The aim of this study was to investigate the particulate dispersion from Kerman Cement Plant. The upwind – downwind method was used to measure particle concentration and a cascade impactor was applied to determine particle size distribution. An Eulerian model, Gaussian plume model and an artificial neural network have been used to compute and predict concentration of PM10 from Ke...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کامل